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We present an integro-differential equation model which, combined with experimental 
measurements of an oscillating free surface jet, calculates dynamic surface tension 
and elongational viscosity of a fluid. Our model builds upon previous models due to 
Rayleigh and Bohr in that it self-consistently incorporates the effects of viscosity and 
gravity. Further, surface tension and viscosity are allowed to be non-constant. The 
principal result of this paper is a technique for the measurement of surface tension 
of newly forming surfaces on the millisecond timescale relevant for agricultural spray 
mixtures. Coincidentally, our model independently yields the elongational viscosity 
of the fluid, although our present experimental apparatus limits the accuracy of 
measurement of this material property. 

In this paper we take measurements from physical jet experiments and implement 
our inverse model to deduce these material properties. The model is first benchmarked 
against standard techniques on a well-characterized fluid with constant surface tension 
and Newtonian viscosity. We then apply our method to an agricultural spray mixture, 
with non-constant surface tension and non-Newtonian rheology. We measure (i) 
the rapid decay of surface tension from the newly formed surface (aged less than 
a millisecond) to the much lower equilibrium value, and (ii) the rate dependence of 
elongational viscosity. 

1. The oscillating jet phenomenon, and its application for the determination 
of dynamic surface tension 

Measurements of oscillating free surface jets have long been used, together with 
analytical models, to determine the surface tension of fluids. The oscillating jet 
phenomenon can be described as follows. When a fluid issues from an elliptical 
orifice of moderate aspect ratio (say 2.0 or less), the initial elliptical cross-section of 
the jet deforms downstream towards a circular shape, then overshoots the circle and 
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FIGURE 1. The oscillating jet phenomenon from Rayleigh (1890). 

returns to become essentially elliptical, but with major axis perpendicular to that of 
the orifice. Further down the jet the cross-section again approximates an ellipse, this 
time with major axis parallel to that of the orifice (figure 1). This oscillation between 
two perpendicular directions continues until either the oscillations are damped or the 
jet breaks up due to capillary instability. 

An oscillating jet executes a vibration that is stationary for the length of the jet 
before breakup occurs. This stationary behaviour is key to the use of the oscillating 
jet as an experimental technique, as it allows the accurate measurement of jet features 
such as wavelength and amplitude. The oscillating jet is a liquid/gas system in which 
a new free surface is created constantly. In agricultural mixtures, the surface tension 
of the interface may decrease by a factor of two or more from the initial exit to the 
equilibrium or static value. In oscillating jet experiments, the age of the surface can 
be controlled by selecting the locations where measurements are made, the orifice size 
and the flow rate. Given a relation between the surface tension and the wavelength of 
the jet, the surface tension of the newly formed surface (on the controlled timescale) 
is deduced through the standard inverse method from experimental measurements. In 
our inverse method, this relation is given by a nonlinear integro-differential equation 
for the steady free surface, with material properties such as surface tension and 
elongational viscosity appearing as coefficients in the equation. 

It is recognized that constitutive relations and material properties are often strongly 
flow and flow-rate dependent. An important advantage of the oscillating jet technique 
is that many practical applications such as spray formation, fibre spinning, and 
extrusion processes involve fundamentally similar flow behaviour - the forcing of 
material in a liquid state through an orifice and the creation of a free surface in air 
or some other gas. Thus the oscillating jet technique determines material properties 
such as dynamic surface tension in a flow which closely approximates the intended 
application. Furthermore, as noted above one can tune the experiments to assess the 
dynamic surface tension on the timescale relevant for a specific process. For example, 
in agricultural sprays one seeks the dynamic surface tension on the timescale of drop 
formation (which happens to be milliseconds). To our knowledge the oscillating jet 
is the only technique that allows surface tension measurements on the very short 
timescales relevant for many manufacturing, solidification, and agricultural processes. 
In these applications, important free surface phenomena occur well before the surface 
tension value has stabilized to a static, equilibrium value. As we show here, our 
technique predicts surface tension values for a particular agricultural spray mixture 
at 0.6 ms and 1.8 ms which are 2.58 and 1.96 times the equilibrium surface tension 
measured by the DuNouy ring, respectively. (Zhang, Harris & Basaran (1994) describe 
a recently developed growing drop technique that can determine the surface tension 
of an interface with a surface age as low as 20 ms.) 
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An oscillating free surface jet can also be exploited to determine elongational 
viscosity. The flow in an oscillating free surface jet is elongational to leading order, in 
an asymptotic sense made explicit in 94, equation (4.8). Thus, any viscous effects are 
indicative of elongational rather than shear viscosity. For Newtonian fluids, we use 
the Trouton relation to deduce shear viscosity and compare against tabulated values 
obtained using standard shear viscometers. For non-Newtonian fluids, for which 
the shear and elongational viscosities are unrelated, our methods yield elongational 
viscosity (in the transverse cross-section of the flow). The effect of viscosity in 
experiments and in the model is to lessen the amplitude of spatial oscillation over 
each successive wavelength downstream; we exploit this behaviour in our inverse code 
which uses experimental measurements of decreasing amplitude of the jet oscillation 
to deduce the elongational viscosity of the fluid. This facility of the oscillating jet 
technique has not been previously exploited to our knowledge, and should be useful 
for material characterization of non-Newtonian fluids such as molten polymers. 

2. The three-dimensional boundary value problem 
We assume that the jet is flowing in the direction of gravity. A fixed rectangular 

Cartesian coordinate system XI, x2, x3 with unit vectors el, e2, e3, is adopted with the 
x3 axis along the centreline of the jet and increasing in the direction of gravity. The 
fluid is assumed to be incompressible and generalized Newtonian, so that its Cauchy 
stress is given by 

where q is the elongational viscosity (not necessarily a constant), D is the symmetric 
part of the velocity gradient, and p is the constraint pressure. In Cartesian component 
notation, using indicia1 notation and the summation convention, the Cauchy stress is 

T = +qD - P I ,  (2.1) 

where u l ,  u2, and u3 are the velocity components in the x1, x2, and x3 directions, 
respectively, and 6 ,  is the Kronecker symbol. The three-dimensional field equations 
for the fluid are the incompressibility constraint 

v u = ui,i = 0, (2.3) 

(2.4) 

and the three components of the momentum equation, 

Tij,j + 43pg  = P(ui,t + ujui,j), 

where p is the density of the fluid (assumed constant) and g is the acceleration due 
to gravity. 

The kinematic free surface boundary condition on the free surface is 

f,t + uif,i = 0, 

f(x1, x2, x3, t )  = 0 

(2.5) 

where 

(2.6) 
is the equation of the free surface. We model surface tension with the kinetic (or 
traction) free surface boundary condition (Edwards, Brenner & Wasan 1991 ; Milliken, 
Stone & Leal 1993), 

[T ,  - T ] n  = C T K ~  + VSo, (2.7) 
where T and T ,  are the stress tensors in the fluid and the ambient gas, respectively, 
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n is the outward unit normal to the free surface, and K is the mean curvature of the 
free surface. The surface tension c is a function of position on the free surface, i.e. 
0 = a(x,,y,,z), where the subscripts indicate that the point is on the surface, and V, 
refers to the gradient operator on the free surface defined by (Stone & Leal 1990) 

V, = [I - n 8 n]V. (2.8) 

T a  = -Pan, (2.9) 

We also assume that T ,  is given by 

where pa is a specified constant pressure exerted by the ambient atmosphere. 

3. Previous oscillating jet models 
The direct analytical model for an oscillating free surface jet with elliptical cross- 

section ideally consists of the three-dimensional boundary value problem formulated 
in the last section. The inverse analytical model likewise ideally consists of posing 
properties of steady solutions, acquired from physical measurements of an actual 
jet, from which the surface tension coefficient and perhaps other material properties 
are deduced. However, it is impractical to perform such an analysis directly on 
the three-dimensional boundary value problem (b.v.p.) of the previous section, since 
adequate three-dimensional simulations are prohibitively expensive and slow. In fact, 
accurate numerical simulations for surface-tension-dominated flows remain an area 
of intense research (Chang et al. 1995; Hou, Lowengrub & Shelley 1994; Pozrikidis 
1992; Basaran 1992; Hou, Lowengrub & Krasny 1991; Mansour & Lundgren 1990). 

Alternatively, one may place simplifying assumptions on the full three-dimensional 
b.v.p. to make the problem computationally tractable. Lord Rayleigh (1879, 1890) 
provided the first development of a simplified analytical model which together with 
experimental measurements of a nearly axisymmetric, oscillating jet could be used for 
the determination of the dynamic surface tension of an inviscid liquid/air interface. 
Limitations and lack of practical viability of Rayleigh’s model were recognized by 
Pedersen (1907). Bohr (1909) proposed an improved model that removes some of 
the limitations of Rayleigh’s theory. In his upgraded model, viscosity corrections and 
adjustments due to non-circular jet cross-sections augment Rayleigh’s formula. Bohr’s 
model is still the state-of-the-art one for determining dynamic surface tension in com- 
bination with measurements of oscillating jets. Each of these classical inverse models 
consists of an explicit formula for surface tension which is applied in conjunction 
with specified experimental measurements. 

3.1. Rayleigh’s model 
Rayleigh’s (1 879) assumptions are the following. 

( a )  Gravity is neglected. 
( b  ) The surface tension and density are constant over the axial length in which 

measurements are taken. 
( c )  Apart from a global, uniform translation, the jet flow occurs only in the two 

transverse directions. This assumption of a uniform axial velocity presupposes that 
gravity is neglected (assumption (a) )  and surface tension is constant (assumption (b)) .  

( d ) The fluid is inviscid. 
( e )  The departure of the free surface cross-section from a circle is small. 

Rayleigh assumes a cylindrical free surface of the form 
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In the case n = 2, which for small 6 approximates an elliptical surface, the linearized 
frequency (w) of oscillation is 

w2 = 6o/pa:. (3.2) 
From assumption (c )  one sees that Rayleigh solved a problem related to that 

shown in figure 1 of a jet issuing from an elliptical orifice. He then translates the 
two-dimensional oscillating cylinder solution to the solution of a jet issuing from an 
elliptic orifice by assuming that each jet material cross-section in figure 1 oscillates 
within its plane according to the two-dimensional solution, while translating with a 
constant velocity v .  Therefore a period T = 2 n / o  of the temporal oscillation of the 
material cross-section happens over a wavelength 

1 = v T = ~ X V / W ,  (3.3) 

so that, combining (3.2) and (3.3), surface tension a can be deduced from the measured 
wavelength i by 

a = 2 n2v2pa:/3i2. (3.4) 

3.2. Bohr’s model 
Bohr (1909) recognized the practical limitations of Rayleigh‘s assumptions ( d )  and ( e ) :  
the inviscid assumption is unrealistic for many liquids and infinitesimal departures 
from a circular cross-section cannot be measured with a sufficient degree of accuracy. 

Bohr offered three improvements to Rayleigh’s model. 
( i )  The effect of viscosity on the period of oscillation of the jet is accounted for by 

generalizing Rayleigh’s linearized analysis (3.1)-( 3.4) to a weakly Newtonian viscous 
fluid. 

( i i )  The effect of finite amplitudes on the period of a vibrating inviscid jet in 
the absence of gravity is calculated by computing the corrections to Rayleigh’s two- 
dimensional result (3.2) up to 0(d2) ,  which is necessary to capture the first frequency 
correction : 

(3.5) 

where 6 is the amplitude of perturbation about the mean radius ao. 

Rayleigh‘s (1879) dispersion relation, 
(iii) To account for the free surface curvature in the axial direction, Bohr notes 

for infinitely small oscillations of an inviscid jet in three dimensions. This expression 
follows from assuming a free surface of the form: 

r(0,  z ,  t )  = ao( 1 + 6 cos n0 cos kz cos w t  + O(S2)) ,  (3.7) 

and again setting n = 2 to approximate an ellipse. 
Bohr posited a combination of the above three disparate analyses together with 

Rayleigh‘s relation (3.3) and proposed the following phenomenological expression for 
surface tension : 
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where 

is the wavenumber of the free surface oscillation, v is the axial velocity of the jet, 
given by the ratio of the volumetric flow rate q and the cross-sectional area A,  

k = 2x12 (3.9) 

(3.10) 

and p and ,u are the density and shear viscosity, respectively, of the fluid (assumed 
known). The amplitude 6 of the perturbation and the mean radius a0 of the jet are 
deduced from the measured maximal dimension 2&,, and minimal dimension 2 k i n  
of the oscillating free surface jet profile from the relations 

6 = ;(&ax - &in), (3.11) 

a0(1+ d2/6ai) = + ( L a x  + &in)* (3.12) 
Note that Bohr assumes a superposition of disconnected results from three dif- 

ferent analyses, one linear, two-dimensional, and weakly viscous, another nonlinear 
inviscid and two-dimensional, and the third linear, inviscid, and three-dimensional. 
Expression (3.8) therefore should be viewed as ad hoc, but nonetheless it has been 
used satisfactorily to the present day (Caskey & Barlage 1971; Defay & Hommelen 
1958; Hansen et al. 1958; Kochurova & Rusanov 1981; Rideal & Sutherland 1952; 
Thomas & Potter 1975; Bleys & Joos 1983; Lukenheimer, Serrien & Joos 1990; Joos 
& Serrien 1989; Zhang & Zhao 1989). 

In the practical application of Bohr’s model there is an ambiguity as to which 
measurements should be selected as &,, and Kin, as we now explain. 

We define the maximum dimensions of the jet cross-section at the beginning, 
middle, and end of the wavelength to be 2gaX, 2&TX, and 2 e a x ,  respectively, and 
the minimum dimensions to be 2 g i n ,  2&yn, and 2ein (see figure 2). In Bohr’s model, 
the axial velocity of the jet and the amplitude and wavelength of the free surface 
oscillation are constant along the jet axis. This follows from the neglect of gravity 
and the fact that viscosity is only added a posteriori. Referring to figure 2, the Bohr 
model therefore assumes 

%ax = C o x  = @ax, 

Gin = = gin. 

%ax > e a x  > E x ,  

%in f en + g i n *  

However, all jets that we measured satisfy 

The fact that Lx and kin are not uniform down the jet indicates that in all physical 
jets, even those with small dimensions, high velocities, and low viscosities, the effects 
of gravity and viscosity are measureable. The effect of gravity is to decrease Lx and 
Gin from one wavelength to the next; the effect of viscosity is to decrease &,, and 
increase kin. 

In the Bohr model, it is just as valid to take (&,,, &in) = (Isfa”,,,  &yn) or (gax, &yn) 
or (;(ex + e,,), &yn) or (G,, ;(gin + ein)), etc. But, as a practical matter, these 
choices result in different values of a0 and 6 for equation (3.8), and produce different 
values for surface tension (r (we give the percentage difference in a particular example 
in $5). As stated earlier, Rayleigh’s and Bohr’s analyses neglect gravity. Geer & 



Model to determine dynamic surface tension and elongational viscosity 385 

a 

FIGURE 2. Measurements taken of the oscillating jet. 

Strikwerda (1983) and Keller (1983) generalize this analysis to include the acceleration 
due to gravity; their extension has not been exploited for determining surface tension 
to our knowledge. 

3.3. Recent oscillating jet  applications and alternative techniques 
We now briefly review various modifications of Bohr’s relation (3.8) which have 
been applied in combination with oscillating jet measurements to determine dynamic 
surface tension. We then note alternative methods in the literature. 

Defay & Hommelen (1958) suggested a simplified form of (3.8), 

37 d2 
1+-- , 

24 a:> 
2 Pq2 

3aoA2 + 57r2ai ( o =  (3.13) 

which follows from Bohr’s relation if viscosity is neglected and one retains the 
leading-order terms in a small argument expansion of the Bessel functions. The 
authors contend that this formula is useful for low-viscosity liquids. Kochurova & 
Rusanov (1981) proposed a further modification of (3.13), 

(3.14) 

where K is an arbitrary constant obtained from experimental data and p1, p2 are the 
densities of the fluid and ambient atmosphere, respectively. 

Alternative techniques employed to determine dynamic surface tension include the 
following. 

( i )  The maximum bubble pressure technique has been widely used (Bendure 1971; 
Garret & Ward 1988; Kao et al. 1991; Edwards et al. 1991) to determine the dynamic 
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surface tension of new surfaces. In this technique a flow of gas into a reservoir of 
the test liquid produces a stream of bubbles; the surface tension of the gas/liquid 
interface is deduced from measurements of the maximum pressure in each bubble 
before it detaches into the liquid. There are drawbacks of the maximum bubble 
pressure technique with regard to the millisecond timescale measurements relevant 
for spinning and spraying processes. First, the stream of bubbles is limited to a rate 
of about ten bubbles per second in water and fifteen bubbles per second in alcohol, 
which yields measurements for a surface age of several hundreths of a second. Second, 
the bubble pressure technique is calibrated against two known systems, typically pure 
water/nitrogen and alcohol/nitrogen, from which the technique interpolates all other 
interfaces. Extrapolation of this technique to fundamentally different materials is 
speculative. 

( i i)  The Langmuir trough method (Langmuir 1917; Edwards et al. 1991) is used 
to determine the dynamic surface tension of newly created monolayers. 

(iii) The falling meniscus method and the pulse drop method (Edwards et al. 1991) 
are employed to determine the dynamic surface tension for surfaces that are initially 
deformed and gradually return to their equilibrium state. 

All of the methods listed above are best suited for purposes distinct from spray 
and spinning applications. 

4. An alternative model for dynamic surface tension measurements; 
extension to the measurement of elongational viscosity 

Recall from $3 that the classical inverse models of Rayleigh and Bohr consist of 
explicit formulae for surface tension which are combined with experimental mea- 
surements. Here we provide further resolution in the inverse model by not insisting 
on a closed-form analytical expression for surface tension (or other material pa- 
rameters). Rather, we derive models in the form of coupled differential equations 
from the full three-dimensional boundary value problem of $2, with the derivation 
based on flow assumptions that can be independently tested. With current compu- 
tational capabilities, inverse codes which iterate on systems of ordinary differential 
equations to deduce surface tension or other material coefficients in the model are 
tractable and inexpensive. By admitting models in the form of systems of steady 
differential equations, the methods of the present paper are proposed as a plat- 
form not just for higher resolution of surface tension, but also for further material 
characterization. 

In this section we first list and discuss all assumptions upon which our model 
is based. We then summarize our numerical tests (Peterson 1994) and related 
studies of the fundamental geometric assumption that the free surface cross-section 
remains elliptical in a surface-tension-dominated flow. Because of difficulties with 
numerical methods for the three-dimensional free surface problem, we thus far 
are only able to test the critical assumptions for the idealized inviscid, trans- 
verse two-dimensional free surface equations without gravity. We also recall rele- 
vant results of similar studies assuming weak viscosity without gravity (Mansour 
& Lundgren 1990) and inviscid jets with gravity (Geer & Strikwerda 1983). Fi- 
nally, we present our steady integro-differential equation model which is derived 
from the full three-dimensional free surface boundary value problem based on these 
assumptions. 



Model to determine dynamic surface tension and elongational viscosity 

4.1. Assumptions to simplify the three-dimensional boundary value problem 
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To derive our model, we make the following assumptions. 
( a )  The jet is slender, defined in terms of a slenderness ratio E, 

0 < E = ro/zo Q 1,  (4.1) 

where ro is a characteristic length scale in the cross-sectional plane coordinatized by x1 
and x2 (e.g. the maximum mean radius of the jet over the domain of measurements), 
and zo is a characteristic length scale in the axial, or x3, direction (e.g. the minimum 
wavelength of oscillation in the axial direction). 

( b )  The flow is steady. (This is not essential; refer to Bechtel, Forest & Lin 1992b; 
Bechtel et al. 1988 for transient forms of various slender jet models.) 

( c ) The fluid is viscous, but not necessarily Newtonian. 
( d ) The fluid density is constant along the wavelength over which measurements 

( e )  The velocity in the axial, or x3, direction is assumed to be of the form 
are taken. The surface tension and viscosity do not have to be constant. 

0 3  = VO[v(x3) + O(E2)1, ( 4 4  

where vo is a characteristic axial velocity and v(x3) is a dimensionless O( 1)  function 
of the axial coordinate x3. 
(f) The velocity components in the x1 and x2 directions are of the form 

01 = VO[(xl/zO)cl(x3) + O(E2)1, 

v2 = VO[(x2/zO)c2(x3) + O(E2)1, 

(4.3) 

(4.4) 
where cl(x3) and [ 2 ( ~ 3 )  are dimensionless 0(1) functions of the axial coordinate x3. 

( g )  The jet exits an elliptical orifice and its cross-section remains elliptical for 
the distance over which measurements are taken. The free surface therefore can be 
represented by 

where @ 1 ( ~ 3 )  and @ 2 ( ~ 3 )  are the semiaxes of the cross-section at the axial location x3. 
Assumptions (a)  and (b)  are dictated by the experimental design. Importantly, 

our small parameter E is based on the transverse-to-downstream aspect ratio of the 
oscillating jet, as opposed to the amplitude of oscillation in Rayleigh’s and Bohr’s 
analyses. Thus, our model is a slender asymptotic approximation which yields a fully 
nonlinear leading-order system, whereas previous analyses of Bohr and Rayleigh 
involve linearization at leading order. 

Assumptions (a), (e), ( f ) ,  and ( g )  are the backbone of a systematic and compre- 
hensive perturbation theory for slender jets (Bechtel et al. 1992a, b). Given these 
assumptions one can rigorously derive self-consistent one-dimensional models (closed 
sets of one-dimensional equations at each order in the perturbation expansion) for 
slender jets. Moreover, the modelling is general enough to capture experimental and 
physical effects which are either inescapable (such as gravity) or desirable (a rheology 
more complicated than Newtonian viscosity, thermal effects, non-constant density, 
etc.), none of which are included in the classical models. 

Assumption ( g )  generalizes Rayleigh’s and Bohr’s assumption that the departure 
of the cross-section from circular is small. Our assumption is more practical for 
physical experiments, since the departure of the oscillation from a circular cross- 
section must be sufficient for discernible measurements of wavelength and amplitude, 
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and high-frequency capillary waves that are troublesome numerically would be hard 
to distinguish from the physical oscillations. In the absence of surface tension, an 
elliptical inviscid free surface flow is an exact solution of the three-dimensional free- 
surface b.v.p. (Geer & Strikwerda 1983; Tuck 1976). In the presence of surface tension, 
the ellipse distorts downstream. The evidence, both experimental and numerical, is 
that for moderate eccentricities (2.5 :1 or less) the elliptical shape remains nearly 
elliptical for at least a few wavelengths of oscillation. We expand on this issue when 
our numerical tests are presented. 

Assumptions (c), ( d )  and (e )  allow for more general flows than the Rayleigh and 
Bohr models. In particular, assumption (e )  is equivalent to Rayleigh‘s and Bohr’s 
assumption that the motion within the jet cross-section is two-dimensional, but we 
have generalized Rayleigh and Bohr’s analyses by allowing the axial velocity to be 
a function of axial coordinate x3. The classical models assume the axial velocity is 
constant to leading order, but we allow acceleration downstream. All experiments, as 
well as our analysis, demand this generalization, which is essential to incorporate the 
eflects of gravity and surface tension gradients. Rayleigh’s and Bohr’s appropriation 
of two-dimensional oscillating cylinder solutions to the three-dimensional oscillating 
jet problem of figure 1 through the identification (3.3) makes sense only if the jet 
axial velocity is constant. Our asymptotic methods deduce, for slender jets, a direct 
correspondence between the two-dimensional oscillating cylinder problem and the 
flow of figure 1. In the special case of no gravity and constant surface tension we 
deduce relation (3.3). 

The primary assumptions in our model are that the initial elliptical jet cross-section 
remains elliptical at least through one oscillation and that the jet is slender, which 
replace Rayleigh’s and Bohr’s assumption that the departure of the cross-section from 
circular is small. Previous numerical studies have explored the evolution of an initially 
elliptical cross-section under similar assumptions. Geer & Strikwerda (1983) studied, 
among other issues, how an elliptical cross-section distorts under the influence of 
gravity and surface tension. 

Petersson (1994) re-examines the validity of our assumptions in numerical simula- 
tions of a idealized inviscid two-dimensional flow with surface tension and without 
gravity, utilizing current numerical techniques (Baker, Meiron & Orszag 1982; Man- 
sour & Lundgren 1990; Lundgren & Mansour 1988; Hou, Lowengrub & Krasny 
1991). We consider this study of the idealized inviscid case as a quantitative test of 
the loss of accuracy which follows from our assumption ( g )  that the initial elliptical 
jet cross-section remains elliptical at least through one oscillation. Since surface 
tension and inertia are the dominant effects distorting the elliptical shape, we do not 
anticipate that these tests will differ significantly once we are able to numerically 
couple viscosity and gravity. The conclusions of Petersson (1994) are summarized 
below: 

Figure 3 depicts the variation of the shape of the cross-section when the initial 
aspect ratio is 1.5. Note that the cross-section remains nearly elliptical for the complete 
period shown. 

In figure 4 we compare the free surface semiaxis +l( t )  (the dimensionless form 
of @(t)  defined ahead in equation (4.7)) from the inviscid 2-dimensional numerical 
computation to the Lagrangian representation 41 ( t )  of the free surface semiaxis from 
the special case of our oscillating jet model with the effects of gravity and viscosity 
suppressed for the comparison. The only direct problem that Bohr solves where the 
free surface profile is deduced from known material properties is the inviscid problem 
without gravity; in figure 4 we also display Bohr’s corresponding solutions, and note 
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FIGURE 3. The deformation of the cross-section with initial aspect ratio 1.5 during the first oscillation, 
from the two-dimensional inviscid numerical simulations of Petersson (1994). (a) The cross-section 
at times 0.0 (solid), 0.603 (dashed) and 1.072 (dotted); (b) times 1.072 (solid), 1.781 (dashed) and 
2.254 (dotted). 

that they are very close to the solutions from our theory. We re-emphasize, however, 
that a primary advantage of our model over the Bohr model is that our model de- 
duces the effects of gravity and viscosity self-consistently from the three-dimensional 
physics. 

From figure 4 we observe that our one-dimensional model underestimates the first 
period of oscillation, by less than 0.5% in the 1.5 aspect ratio case and 2.0% in the 
2.0 aspect ratio case. These discrepancies would translate in the inverse problem into 
errors of 1.0% and 3.5%, respectively, in predictions of the surface tension. 

We infer from these tests that for oscillating jets with aspect ratio 2.0 our model is 
capable of quantitative accuracy with errors in predicted wavelength on the order of 
2.0%, which translates in the inverse problem to surface tension measurements with 
an error on the order of 3.5%. 

4.2. Our model for the oscillating jet with viscosity and gravity: the direct problem 

We now exploit our assumptions outlined in 0 4.1 to reduce the 3-dimensional free 
surface b.v.p. to a scalar 1-dimensional equation, following Bechtel et al. (1988). We 
first non-dimensionalize the problem by scaling all quantities by the characteristic 
velocity DO, characteristic axial length ZO, and characteristic transverse length ro. In 
particular we define the dimensionless coordinates x, y, z through 

and the dimensionless semiaxes of the elliptical jet cross-section through 
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0.6 I I 
0 1.5 3.0 

Time 
FIGURE 4. The free surface semiaxis 4l(t) as function of time for initial aspect ratios 1.5 (a) and 
2.0 (b ) .  The solid lines are the solutions from the asymptotic theory developed ahead in Q 4.2 
with the effects of gravity and viscosity suppressed for the purpose of comparison to the numerical 
solutions. The dotted lines are the solutions from Bohr’s forward problem, which neglects gravity 
and viscosity. The dashed lines are 41(t) from the two-dimensional inviscid numerical solutions of 
Petersson 1994. 

Assumptions (a) ,  (e) ,  and (f) of 0 4.1 and the non-dimensionalization (4.6) imply a 
rate of strain tensor of the form 

(4.8) 1 (uo/~o)51 0 4 ~ o / ~ o ) x r l , z  
o = [  0 ( u o l Z o ) r 2  4 ~ o l Z o ) Y l ; 2 , 2  + W2), 

4 ~ o l ~ o ) x r l , z  4 u o l Z o ) Y i 2 ,  (uo/zo)u,z 

so that D is diagonal to leading order in E, and hence the oscillating jet flow is 
elongational to leading order. This flow is the elliptical transverse generalization 
of von Karman’s (1921) axisymmetric plug flow ansatz which he used to study 
unbounded steady flow induced by an infinite, uniformly rotating planar disc. 

We select the origin z = 0 to be the beginning of the wavelength (refer to figure 2). 
We choose the characteristic velocity uo to be the axial velocity u3 at this origin, 

00 = v3(0), (4.9) 
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and the characteristic transverse scale ro to be the geometric mean of the elliptic 
semi-axes at z = 0, 

(4.10) 

The three-dimensional problem is reduced to one dimension in the slender asymp- 

( i )  multiplying the x-component of the momentum equation (2.4) by x and 

( i i )  multiplying the y-component of the momentum equation (2.4) by y and 

(iii) integrating the z-component of momentum equation (2.4) over the jet cross- 

( iv)  retaining only the leading-order terms in the slenderness ratio E = ro/zo, 
( v )  using the kinetic free surface boundary condition (2.7) to replace the boundary 

terms of velocity and pressure, that appear through the divergence theorem in these 
integrations, with surface tension and ambient pressure terms. 
We then use incompressibility (2.3), the kinematic free surface boundary condition 
(2.5), and the z-component of the momentum equation to eliminate 51, 52 ,  $2, and u. 

If the surface tension CT varies along the perimeter of the cross-section and along 
the length of the jet, i.e. CT = ~(x,, y,, z) where x, and y, are points on the surface of 
the jet cross-section, and all possible terms incorporated in the model are important 
in the leading order competition between physical effects, then the reduction outlined 
above results in 

B 112 ro = [ G ~ ( o ) Q ~ ~ ( o ) I ~ / ~  = ( e x k i n )  . 
We postpone selection of the axial length scale zo until just after equation (4.24). 

totic limit by 

integrating over the jet cross-section, 

integrating over the jet cross-section, 

section , 

4% 1 
41 [1++~~1$1,,-2-+4& Y,-Yc)+T E&-v-’I 412 

1 1 
vv, = E2 (G(z)v, - - ) xf#&s(z) + 3’ 

where 

(4.1 1)  

(4.12) 

(4.13) 

(4.14) 

(4.15) 

The notation f(x,(u, z), y,(u, z), z)du indicates the line integral of f evaluated on the 
free surface, around the cross-section; said differently, the surface is parameterized by 
the axial coordinate z and a transverse coordinate u, and f is integrated over u at fixed 
z. The solution of (4.1 1)-(4.13) gives the dimensionless cross-sectional semiaxes &(z) 
and 42(z) and the axial velocity v(z) of the jet as functions of the dimensionless axial 
coordinate z. The integration constants in (4.11), (4.12), and (4.13) are determined 
by our choices (4.9) and (4.10) for the characteristic scales vo and ro. All material 
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properties and characteristic scales are contained in the dimensionless parameters 

The Froude number F is a constant; the Weber number W(xs,ys ,z)  is a function 
of all spatial coordinates on the free surface, since surface tension o(x,,y,,z) is 
allowed to vary along the length and around the cross section of the free surface. 
The function S ( z )  indicates the relative importance of the axial gradient of surface 
tension along the jet. In its primitive form, the elongational viscosity q depends upon 
the three invariants of the rate of strain tensor 0,  namely ID, IID, and IIID. The 
incompressibility condition reduces ID to zero. In a slender jet flow the other two 
invariants are to leading order functions of z only, as can be seen from equation (4.6). 
Therefore, in our leading-order model the effective viscosity (and hence the Reynolds 
number R )  is a function of z only. 

Note that we have retained O(c2)  terms in equation (4.12), whereas all other 
terms appear to be dominant and O(1). The O(c2)  terms represent the possible 
coupling of axial variations in viscosity and surface tension through the integrated 
axial momentum equation, which would occur only if G(z )  and/or S ( z )  are 0(cp2)  or 
larger. 

In the direct problem given by equations (4.11), (4.12), and (4.13) the surface 
tension and viscosity, and hence W ,  S ,  and R, are specified functions of position. For 
example, it may be assumed that in the presence of dilute surfactants the variation of 
surface tension is given by a Gibbs equation of state (Adamson 1982; Rosen 1988) 

oS - 0 = T'RT, (4.17) 

where os and o are the surface tensions of the uncontaminated and actual surfaces 
respectively, r' is the surface concentration of the surfactant, R is the gas constant, 
and T is the absolute temperature. Other equations giving explicit relationships 
between o and os may be found in Edwards et al. (1991); Borwanker & Wasan 
(1983); Stone & Leal (1990); Lin, McKeigue & Maldarelli (1990); Milliken et al. 
(1993). In addition to a constitutive assumption on o such as (4.17), one also couples 
a surfactant mass transport equation (Probstein 1989; Stone & Leal 1990; Edwards 
et al. 1991; Swean & Beris 1994). 

In this paper, we pursue physical situations where G(z )  and S ( z )  are O( 1) or less. 
This reduces (4.12) to a form which integrates exactly to 

(4.18) 

the standard axial velocity profile (Geer 1977; Petrie 1979) of a cylindrical jet falling 
under gravity. If the change in surface tension is a function only of the time of 
exposure z of the surface to ambient conditions, i.e. the age of the newly formed 
surface, then in our steady Eulerian formulation o = @(z).  Explicitly, if S ( z )  is 0(1) 
or less then, from (4.18), the dimensionless age z of the surface from z = 0 is 

Z(Z) = 1' d = F ($ + 1) 'I2 - 1, (4.19) 

so that if the variation ~ ( z )  of surface tension with age is known, it may be converted 
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to a function of z through 

0 = B(z) = B ((; F - + 1 y2 - 1 ) = (I(z) .  (4.20) 

For the balance of physical effects where S ( z )  is not leading order, and when D = ~ ( z ) ,  
the leading-order oscillating jet model consists of equations (4.13), (4.18), and 

[ 1 + 4; (; + l)] 4 1 , z z  - 2" 42 41 + -&(Ips W 4 - I&) + I; [ 4; - ('F" - + 1 ) - ' I  41,z 

"1 = O ,  (4.21) 

where the dimensionless parameter F is defined in equation (4.16) while W and R are 
now given by 

The surface curvature effects appear through the elliptic-integral expressions 

cos2 f3 de 
v c  = vc ( z )  = ~ 

71 

sin2 e do 
(4; sin2 8 + 4; cos2 69312' 

2n 

71 

(4.22) 

(4.23) 

(4.24) 

Recall from equations (4.2)-(4.3), (4.7), (4.8) that our theory demands three charac- 
teristic scales, namely a transverse length scale ro, an axial length scale ZO, and an axial 
velocity scale vo. Definitions (4.9) and (4.10) explicitly select ro and VO. The obvious 
choice for the final characteristic scale zo is the wavelength of oscillation, but it is a 
priori unknown. We therefore select zo to be a reasonable guess for the wavelength, 
say ten times the initial mean radius ro. The prescience of this choice is not impor- 
tant, due to a scale invariance property of the leading-order differential equations, 
(4.11), (4.12), (4.13), or (4.21), (4.18), (4.13). Namely, if zo is replaced by azo then 
the dimensionless parameters satisfy W(az0)  = W(z0) /a2 ,  F(az0) = F(zo)/a,  G(aoz0) = 
G(zo),R(azo) = R(zo)/a,S(azo) = aS(z0). It follows that if the axial coordinate z is 
replaced by z / a  and the scale zo by azo, then the leading-order equations are invariant. 
The significance of this property is that the dimensional solution is independent of zo. 
For example, if we choose zo = lor0 in our model and compute a dimensionless wave- 
length 1 = 1.8, then the choice of zo = 20r0 would yield a dimensionless wavelength 
1 = 0.9. For either choice, the dimensional wavelength is 18ro. 

The dimensionless direct (forward) problem in a particular regime consists of solving 
the governing differential equations ((4.11), (4.12) and (4.13), or (4.21), (4.18) and 
(4.13)) for specified surface tension and viscosity functions, and specified conditions 
at z = 0, to obtain the values of the jet response 41(z )  along the length of the jet, 
z > 0. The dimensional solution is then produced by multiplying by the characteristic 
length and velocity scales as indicated in equations (4.2)-(4.3), (4.7), (4.8). Figure 5 
shows the effect of viscosity and gravity in the regime of equations (4.21), (4.18), and 
(4.13) on the dimensional jet profile for a water jet with flow rate 45 g s-l from an 
elliptical orifice with major axis 0.6 cm and minor axis 0.3 cm. Note that viscosity 
and gravity each have a significant effect on both the amplitude and wavelength of 
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Axial distance (cm) 

FIGURE 5. The effect of viscosity and gravity on an oscillating water jet (density = 0.9974 g cmP3, 
elongational viscosity = 3.015 cP) into air (surface tension = 72.03 dyn cm-’, acceleration due to 
gravity = 981 cm s-*) with flow rate 45 g s-l from a 0.6 x 0.3 cm elliptical orifice. The free surface 
profile predicted by our model (4.21) neglecting gravity and viscosity: W = 2.992,1/R = 1/F = 0 
(dotted); neglecting gravity but including viscosity: W = 2.992, R = 655.6,1/F = 0 (long dashed); 
neglecting viscosity but including gravity: W = 2.992,1/R = 0,F = 48.94 (dashed); and including 
gravity and viscosity: W = 2.992, R = 655.6, F = 48.94 (solid). 

Axial distance (cm) 

FIGURE 6. Comparison of the predictions of Bohr’s and our direct models for the oscillating jet of 
figure 5. Our prediction including gravity and viscosity: W = 2.992, R = 655.6, F = 48.94 (solid); 
Bohr’s prediction, which does not include gravity and viscosity: W = 2.992 (dotted). (While Bohr’s 
inverse formula includes viscosity his direct model does not.) 

the oscillating jet profile. Our experience indicates these effects are always measurable 
and therefore should be included in any model which seeks to adequately characterize 
material properties based on measurements of oscillating jets. Figure 6 compares 
jet profiles predicted by Bohr’s model and our model (4.21) for the oscillating jet of 
figure 5. The direct problem is studied in Bechtel (1989). 
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4.3. The inverse problem 
For our application to material characterization we must solve the inverse formulation 
of our model, i.e. find values of surface tension and viscosity to match specified values 
of 41(z) at any particular points on the jet profile. The assumption made is that for 
given functions of Weber number W(x,,  y,, z ) ,  Reynolds number R(z), and Froude 
number F ,  and given initial values of $1, 4 1 ~  (slope of jet profile) and 42/41 (aspect 
ratio), there exists a unique jet profile and vice versa. This assumption is confirmed 
for all examples we have explored. 

395 

5. Implementation of the inverse problem 
5.1. The inverse code 

In order to apply the inverse formulation of 8 4.3, we perform oscillating jet exper- 
iments on ethanol, and from these experiments we deduce the surface tension and 
viscosity of the fluid. For this test fluid with constant values of surface tension and 
viscosity, we implement an inverse code based on equations (4.13), (4.18), and (4.21) 
with W and R constant. The code iterates on the two parameters W and R until the 
solution of (4.13), (4.18), and (4.21) converges to experimental measurements of the 
dimensionless wavelength 1' and amplitude $; (Ae)  of the jet profile. 

The iteration we employ is based on a bisection method in the two parameters. 
We first guess values of W and R, then iterate on W alone to match the measured 
wavelength A'. Next, bisection on R is applied with fixed W to fit the experimental 
amplitude @(Ae).  We then repeat this procedure until specified tolerances on 1' and 
44(Ae) are met. This simple iteration scheme is effective because an increase in W 
(corresponding to a decrease of surface tension) is accompanied by an increase in the 
wavelength of oscillation of the jet profile, while an increase in viscosity (a decrease 
in R)  leads to a lessening of the amplitude of vibration. 

5.2. Experimental apparatus and measurements 
The experimental apparatus consists of an air-pressurised reservoir connected to an 
elliptical-shaped orifice. A Model VC-81D high-resolution video camera (Dage MTI) 
captures the jet profile and a simultaneous perpendicular view reflected on a mirror 
inclined at an angle of 45". The magnification of the camera and lens setup results 
in digital images on a Princeton Research Model Ultra 16 video monitor (Princeton 
Graphic Systems) which are approximately 50 times the actual size. Each pair of 
waveforms is captured with an Epix 16 Meg imaging board (Epix Inc.) and stored 
on a Bernoulli disk (Iomega). The waveforms are enhanced using an edge detection 
operation, allowing the coordinates of the edge, accurate to one pixel, to be recorded. 
Pairs of these coordinates give amplitude and wavelength measurements in pixels. 
Figure 7 shows the enhanced image of an oscillating water jet; the direct view is on 
the left and the reflected, perpendicular view is on the right. 

Advantages of the current video system are 
( a )  the high-resolution video camera and monitor can produce magnification of 

( b )  computer software allows for identification of individual pixel values; and 
( c )  perpendicular views of the waveform taken simultaneously can be measured. 
The current video-based measurement technique combined with the inverse code 

produces accurate values of surface tension, but a fundamental limitation on trans- 
verse resolution inhibits our accuracy for elongational viscosity. Specifically, the 

50-2OOX; 
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FIGURE 7. Enhanced form of the image of an oscillating water jet. 

calculation of surface tension in the inverse code depends primarily on matching the 
measured wavelength, and an accurate calculation requires a precise measurement of 
the wavelength of the free surface jet oscillation. The current video system measures 
wavelengths on the order of 600 pixels, with error bounds of approximately Z5 pixels. 
This error is attributable to the small curvature (i.e. flatness) of the oscillating jet pro- 
file at its maxima and minima. When combined with the inverse code this precision 
translates to a variation of approximately '6% in the calculated surface tension. The 
resolution of the video system in the transverse direction is typically 20.5 pixel on 
transverse measurement on the order of 60 pixels for the maximum dimensions, and 
less for the minima. This translates into a limitation on the precision of predictions 
of elongational viscosity on the order of '25%. Three factors conspire: 

( a )  a complete wavelength of the oscillating jet must be captured on the video 
screen; 

( b )  the video screen is 1234 pixels in the axial direction x 1975 pixels in the 
transverse direction; and 
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Even in the best case, where the wavelength takes up the entire 1234 pixel length, the 
transverse widths of the jet will be on the order of 120 pixels, and so the optimal 
resolution is '1 in 120. 

Therefore the same feature that works to the advantage of the video system as 
compared to other image processing techniques becomes a limitation as our analysis 
pushes the limits of the experimental capability: the inherent digitization of the jet 
image which allows a rapid analysis of the image using a cursor also imposes a limit 
on the fineness of transverse resolution. 

( c )  the jet is slender. 

5.3. Analysis of the data 
Representative input data obtained from experiments performed on 100% ethanol 
and output from our inverse code are given in table 1. The raw inputs to the inverse 
code are: 

( i )  The wavelength A and the six maximal and minimal cross-sectional dimensions 
2 k a x  and 2Rmin, respectively, at the beginning, middle, and end of the wavelength 
(refer to figure 2). In their primitive form these dimensions are taken in pixels from 
a digitized image on the video screen. 

( i i )  The density of the liquid, the mass of liquid captured in a time interval while 
the oscillating jet measurements are being taken, and the duration of the interval. 
The interval duration is chosen so that the flow rate of the jet is uniform over the 
interval. The density of the liquid for this particular experiment is a handbook value. 
The density, mass of liquid, and time of capture are used to calculate volume flow 
rate and, in conjunction with the area of the cross-section at the beginning of the 
wavelength z = 0, the initial axial velocity v(0). 

In addition, five internal values, namely slenderness ratio E, initial guesses of the 
Weber number and viscosity, and increments in Weber number and viscosity, are 
specified for the iteration procedure. Numerical experiments with the inverse code 
reveal that the predicted values of surface tension and viscosity are independent of 
these initial guesses, in particular the slenderness ratio, consistent with our earlier 
discussion that the specific value of zo is not important as long as E is small. 

The input data are used to perform the scaling and non-dimensionalization laid 
out in equations (4.1)-(4.9). The code then inverts the model (given by equations 
(4.13), (4.18), and (4.21)) to yield output values of surface tension and viscosity and 
the corresponding Weber and Reynolds numbers. The code has two options in the 
inversion procedure, max-max and min-min : In the max-max option the code iterates 
over the wavelength from a maximum to a maximum (go, to eax in figure 2). For 
this option the initial conditions on equation (4.21) are 

The code iterates on surface tension and viscosity until it arrives at a solution to 
equation (4.2 1) which satisfies, within the specified tolerances, 

$ l ( A e )  = !!!& , +,,Jne) = 0, (5.2) 
YO 

at the dimensionless downstream location 

(5.3) 
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2 X Jclu 
2 x Gin 
2 x %%x 

2 x G n  
2 x em 
2 x g i n  
1' 
horizontal scale 
vertical scale 
density 
flow rate 

code type 
surface tension 
elongational viscosity 

checks : 

K%& 
%%X 

4% 
Gn 

e; 
%in 

4% 
E X  

% difference 

% difference 

YO difference 

% difference 

INPUT 
63.5 
31.0 
59.5 
33.0 
59.0 
33.5 

593.0 
1401.5 
1196.5 

0.7859 
0.401 1 

OUTPUT 
max-max 
23.87 
0.03706 

0.02179 
0.02 123 
0.6682 
0.01 149 
0.01177 

0.01188 
0.01195 

-0.6177 

-0.1478 
- 
- 

- 

pixels 
pixels 
pixels 
pixels 
pixels 
pixels 
pixels 
pixels cm-' 
pixels cm-' 
g cmp3 
cm3 s-l 

min-min 
23.83 
0.04043 

0.02172 
0.02123 
0.5833 
0.01 152 
0.01 177 

-0.5307 
- 
- 
- 

0.02092 
0.02105 

-0.1475 

dyn cm-' 
g cm-I s-' 

cm 
cm 

cm 
cm 

cm 
cm 

cm 
cm 

TABLE 1. Input and output data for an oscillating jet of 100% ethanol @I 24 "C 

In the min-min option the code iterates from a minimum to a minimum (gin to 
gin in figure 2). Table 1 gives the output of the inverse code obtained by running the 
input data measured in the experiment through the max-max and min-min options. 
The difference in surface tension is negligible, whereas viscosity varies about 7%. 

For comparison, the values of surface tension and shear viscosity in handbooks 
(Flick 1985; Scheflan & Jacobs 1953), for 100% ethanol at 20°C are 22.2 and 
22.3 dyn cm-', and 1.22 and 1.20 CP respectively. These shear viscosities correspond 
to elongational viscosities of 3.66 CP and 3.6 cP. The surface tension of the same 
specimen of 100% ethanol was measured in the same laboratory environment with a 
DuNouy ring, indicating a value of 22.4 dynes cm-'. These surface tension values are 
determined from static techniques, and viscosities are measured in shear viscometers, 
but since ethanol has a constant surface tension and a constant Newtonian viscosity 
(so that shear viscosity is one third of elongational viscosity), our predictions may 
be compared. The result of these comparisons for the cases given in table 1 is that 
our predicted values of surface tension and viscosity agree to within experimental 
accuracy of the current video system with the handbook values of surface tension 
and viscosity and the surface tension value obtained with the DuNouy ring. That is, 
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our predicted surface tension agrees within 7% and the elongational viscosity within 
lo%, in the worst comparisons. 

After giving the output of the inverse problem, namely the viscosity and surface 
tension, the code then provides some checks of the output. Of the seven length 
measurements (see figure 2) taken in the experiment, only four are used in the inverse 
problem: two (eax and gin) to fix the length scale ro, and two to iterate on (A and 
Gx in the max-max code, and A and gin in the min-min code). The remaining 
three measurements (qax, en, gin in the max-max code, and qax, &yn, gax in 
the min-min code) are not employed in the iteration scheme. As a check the code 
computes the maxima and minima of the free surface profile corresponding to these 
three measurements ; the degree of agreement between the calculated and measured 
values is an indication of the accuracy of the model. For the 100% ethanol jet of 
table 1 the greatest discrepancy is 0.67%. 

We also compute values of surface tension from the jet measurements using Bohr's 
algebraic formula (3.8), with viscosity prescribed to be the handbook value 1.20 cP. 
Recall that in using Bohr's relation there is ambiguity as to which measurements 
should be selected as Rmx and kin. Eight of the possible choices are used to examine 
the variation of the calculated surface tension due to this selection, and we find the 
predicted values range from 23.1 to 24.8 dyn cm-', a spread of 7%. We recall that 
our model prediction is 23.8 to 23.9 dyn cm-', which sits in the middle of the Bohr 
range. 

We next apply our inverse code to experiments involving a dilute solution of 
Nalcotrol in water. Nalcotrolt is an agricultural adjuvant used to change the 
properties of a pesticide mixture with the intent of producing larger mean droplet 
sizes in the spray and hence reducing spray drift. The resulting solution is non- 
Newtonian, and due to the migration of surfactants the tension of a newly formed 
surface decreases rapidly with time. Although viscosity and surface tension are not 
constant, the current inverse code predicts an effective viscosity and surface tension 
over the wavelength (here 0.3 cm) and Lagrangian timescale (here 0.6 ms) in which 
the measurements are taken. We find that these effective values change with distance 
downstream of the orifice, as the age of the newly formed surface increases and the 
deformation rate of the flow decreases. 

To more fully exploit the capabilities of our model, which allows q and c to be 
non-constant within the wavelength of oscillation, new inverse codes and experiments 
are required which can then provide information about the variations of viscosity and 
surface tension on even shorter Lagrangian timescales. This extensive development is 
underway. 

Table 2 contains data from two oscillating jets of Nalcotrol in water at different 
downstream locations. The surface age of each downstream location is taken to be the 
age at the middle of the wavelength, and computed using equation (4.19). The second 
column in table 2 uses data measured between the first and second maxima after the 
nozzle of an oscillating jet, where the surface is 0.6 ms old while the third column 
is for data between the third and fourth maxima, where the surface is 1.8 ms old, 
for two different realizations of the same experiment. Note that the surface tension 
decreases significantly between these two times, from 111.4 dyn cm-' at 0.6 ms to 
84.6 dyn cm-' at 1.8 ms, on its way to an equilibrium static value of 43.2 dyn cm-l 

t Reference to a proprietory product is for specific information only, and does not imply 
approval or recommendation of the product by the The Ohio State University, the US Department 
of Agriculture, and Los Alamos National Laboratory to the exclusion of others that may be suitable. 
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2 x rs f lax  

2 x Gin 
2 x e x  

2 x KYn 
2 x %ax 

2 x Gin 
I' 
horizontal scale 
vertical scale 
density 
flow rate 

INPUT 
62.0 
39.0 
58.0 
42.0 
57.0 
42.0 

401.5 
1401.5 
1196.5 

0.9976 
0.5648 

55.0 
44.0 
54.0 
44.0 
54.0 
44.0 

452.0 
1401.5 
1196.5 

0.9976 
0.5641 

pixels 
pixels 
pixels 
pixels 
pixels 
pixels 
pixels 
pixels cm-' 
pixels cm-' 
g cmp3 
cm3ss1 

OUTPUT 
code type max-max max-max 
surface age 0.5748 1.797 ms 
surface tension 111.4 84.63 dyn cm-I 
elongational viscosity 18.38 6.169 g cm-' s-' 
strain rate 2350 1120 S-1 

checks: 

R,M,x 0.02069 
%difference 0.5085 
4% 0.01457 
4% 0.01498 

%: 0.01 5 12 
':in 0.01498 
% difference 0.2242 

&Tx 0.021 11 

% difference -0.691 1 

0.01944 cm 
0.01927 cm 
0.2221 
0.01584 cm 
0.01570 cm 
0.2249 
0.01597 cm 
0.01570 cm 
0.4327 

TABLE 2. Input and output data for two oscillating jets of a 0.05% volume fraction solution of 
Nalcotrol in water @ 23 "C 

measured by the DuNouy ring method. We are not yet sure of the significance of 
the numerical values beyond their demonstration of a marked decay. It may be, for 
instance, that the value of 114 dyn cm-' is physical, but it is also likely to be an 
indication of the limitations of the present inverse model, as discussed above. 

The elongational strain rates in the oscillating jet model are the transverse velocity 
coefficients cl, (2 and axial velocity gradient u , ~  (see equations (4.2)-(4.4)). In the 
oscillating jet flow the magnitudes of cl and (2 are comparable, and both are far 
greater than the magnitude of u , ~ .  For the simulations of table 2 the transverse 
strain rates have maximum amplitudes of approximately 2350 s-l and 1120 s-l, 
with corresponding transverse elongational viscosities of 18.37 and 6.17 g cm-' s-l, 
respectively. Shear viscosities for the Nalcotrol solution measured with a Cannon 
Manning vacuum viscometer were 7.77 and 3.2 g cm-' s-l, at shear rates of 0 s-l 
and 2 1520 s-l, respectively. 

6. Summary 
We have proposed and applied a combined mathematical model, numerical code 

and experimental technique for determining elusive material properties of fluids - dy- 
namic surface tension and elongational viscosity. Our surface tension characterization 
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of a test fluid with constant material properties, 100% ethanol, compares favourably 
with standard table values and alternative DuNouy ring measurements relevant for 
static surface tension. As shown by the application to a Nalcotrol agricultural solu- 
tion, our methodology yields an effective dynamic surface tension of a newly formed 
surface in an environment consistent with industrial and agricultural applications. 

Our techniques further yield an estimate of elongational viscosity, which is likewise 
an important material property in industrial applications. Limitation in the transverse 
resolution of our present experimental apparatus prevents us from fully exploiting 
this capability. 

As noted at the end of 95, a 
present focus is on new inverse codes that exploit the model capability to incorporate 
non-constant surface tension and viscosity, within the wavelength over which mea- 
surements are taken. Furthermore, new inverse codes, based on more complicated 
rheological models, and compatible experiments are being developed to determine 
additional material properties such as elastic relaxation and temperature-dependent 
viscosity. Also, we intend to improve transverse resolution of our experimental 
measurements by recording images on photographic film, which will yield improved 
accuracy in elongational viscosity measurements. 

Finally, we mention extensions of this work. 
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